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Abstract
Key message A major QTL Qsta9.1 was identified on chromosome 9, combined with GWAS, and co-expression net-
work analysis showed that GRMZM2G110929 and GRMZM5G852704 are the potential candidates for association 
with maize kernel starch content.
Abstract Increasing maize kernel starch content may not only lead to higher maize kernel yields and qualities, but also 
help meet industry demands. By using the intermated B73 × Mo17 population, QTLs were mapped for starch content in this 
study. A major QTL Qsta9.1 was detected in a 1.7 Mb interval on chromosome 9 and validated by allele frequency analy-
sis in extreme tails of a newly constructed segregating population. According to genome-wide association study (GWAS) 
based on genotyping of a natural population, we identified a significant SNP for starch content within the ORF region of 
GRMZM5G852704_T01 colocalized with QTL Qsta9.1. Co-expression network analysis was also conducted, and 28 mod-
ules were constructed during six seed developmental stages. Functional enrichment was performed for each module, and one 
module showed the most possibility for the association with carbohydrate-related processes. In this module, one transcripts 
GRMZM2G110929_T01 located in the Qsta9.1 assigned 1.7 Mb interval encoding GLABRA2 expression modulator. Its 
expression level in B73 was lower than that in Mo17 across all seed developmental stages, implying the possibility for the 
candidate gene of Qsta9.1. Our studies combined GWAS, mRNA profiling, and traditional QTL analyses to identify a major 
locus for controlling seed starch content in maize.

Introduction

Maize (Zea mays) is one of the most important produc-
tion crops worldwide, and approximately 70% of its kernel 
weight is starch, which is the main energy source component 
supplying adequate food and feed to humans and animals, 

as well as a vital role in bio-ethanol production and the 
industrial applications. Improving maize kernel starch con-
tent may not only lead to higher maize kernel yields and 
qualities, but also enhance the portion used in industrial 
applications.

Typically, starch is a complex branched polymer wherein 
the d-glucose units are linked by α-(1,4) linkages and the 
branch points are α-(1,6) linkages, generating two main 
homopolymers: amylose and amylopectin. In the endosperm, 
amylose is synthesized by pyrophosphorylase (AGPase) syn-
thesizing the ADP–glucose and granule-bound starch syn-
thase (GBSS). Amylopectin biosynthesis requires a series of 
enzymatic reactions involving AGPase, soluble starch syn-
thase (SS) lengthening the glucose polymer by the formation 
of α-(1,4) bonds, starch branching enzyme (BE) forming the 
α-(1,6) bonds, and starch debranching enzyme (DBE) that 
cleave α-(1,6) bonds (Jeon et al. 2010). Other than DBE, a 
series of α- and β-amylases also degrade starch during cereal 
germination.

In maize, a number of genes play major roles in starch 
metabolism and mutations of these genes can dramatically 
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influence starch content (Hennen-Bierwagen and Myers 
2013). For example, shrunken1 (sh1) mutant can reduce 
the activity of sucrose synthase to hinder the sucrose from 
converting to uridine diphosphate glucose and fructose 
(Chourey 1981; Chourey and Nelson 1976). Mutations of 
brittle2 (bt2) and shrunken2 (sh2) genes, encoding AGPase 
large subunit and AGPase small subunit respectively, cause 
significant reduction in starch content with reduced AGPase 
activity (Cameron and Teas 1954; Dickinson and Preiss 
1969; Laughnan 1953; Tsai and Nelson 1966). Some other 
genes also have their roles in starch biosynthesis, includ-
ing brittle1 (bt1), Waxy1 (Wx1), Dull1 (Du1), Amylose 
extender1 (Ae1), Sugary1 (Su1), Sugary2 (Su2), and Zpu1 
(Hennen-Bierwagen and Myers 2013). The mutants of these 
genes lead to reducing the starch content, such as shrunken1, 
brittle2, and shrunken2. However, a number of other genes 
may exist and subtly alter starch content variations with the 
artificial selection. By using a recombinant inbred line (RIL) 
population, seven genes detected as QTLs were considered 
as potential candidate genes for starch content, three of them 
encode enzymes in non-starch metabolism and four may 
act as regulators of starch biosynthesis (Wang et al. 2015). 
Unlike key genes involved in the pathway, these QTLs could 
be introduced into an elite cultivar through marker-assisted 
selection and facilitate the improvement for fine-tuning 
starch content in breeding program (Ashikari and Matsuoka 
2006).

Network analysis based on similarity of gene expression 
pattern has been considered as a more rapidly way to reinforce 
the discovery of candidate genes or loci with higher confi-
dence (Liseron-Monfils and Ware 2015). Gene co-expression 
networks are useful in identification of gene modules and key 
genes responsible for a particular condition. Weighted cor-
relation network analysis (WGCNA) is a technique widely 
used for finding modules by using the gene expression lev-
els that are highly correlated across samples (Langfelder and 
Horvath 2008). Through this approach, co-expression net-
works were constructed and gene modules were successfully 
detected in Arabidopsis, rice, maize, soybean, tomato, sugar-
cane, and Populus (Choe et al. 2016; Das et al. 2017; DiLeo 
et al. 2011; Downs et al. 2013; Ferreira et al. 2016; Shaik and 
Ramakrishna 2013; Zinkgraf et al. 2017). Based on transcript 
abundance data at 50 developmental stages in maize, 24 robust 
co-expression modules were classified and strongly associ-
ated with tissue types and related biological processes (Downs 
et al. 2013). In networks, those genes highly connected are 
called hub genes and expected to play important roles in some 
biological mechanism of response under particular conditions 
(Das et al. 2017). Through integrated network analysis, a class 
of hub genes had been identified to induce major transcrip-
tome reprogramming during grapevine development (Palumbo 
et al. 2014). In most cases, co-expression network analysis 
was used to identify gene modules for a particular condition; 

nevertheless, it also can be used for discovering conserved 
modules across species under different conditions (Leal et al. 
2014; Obertello et al. 2015). By using co-expression analysis 
between tomato and potato coupled with chemical profiling, an 
array of 10 genes were revealed partaking in SGA biosynthe-
sis, a toxic substance found in some tubers and tomatoes (Itkin 
et al. 2013). Through analysis of a drought-tolerant maize gen-
otype HKI1532 and a drought-sensitive genotype PC3, 174 
drought-responsive genes were selected from HKI1532, and 
their co-expression network revealed key correlations between 
different adaptive pathways (Thirunavukkarasu et al. 2017).

On the other hand, co-expression networks analysis con-
tained several limits, for example, a high level of false posi-
tive interactions based on similarity of expression patterns 
independent of any real physical or regulatory link. Another 
problem is the low correlation between mRNA and protein 
levels under the condition studied (Petricka et al. 2012). 
So network analysis should rely on the integration of these 
methods with conventional and molecular breeding. Com-
bination of molecular networks, transcriptomic data, and 
genetic map information from QTL and genome-wide asso-
ciation studies analyses should efficiently reduce the false 
positive rate inherent to each individual method (Liseron-
Monfils and Ware 2015).

In this study, QTL mapping together with genome-wide 
association analysis identified a genomic region controlling 
starch content on chromosome 9, and co-expression network 
analysis suggested candidate genes. By using intermated 
B73 × Mo17 (IBM) population, a major QTL Qsta9.1 was 
mapped in a 1.7 Mb region of 5,080,913 bp to 6,826,022 bp 
of chromosome 9 based on B73 v3 reference genome. Allele 
frequency analysis in a newly constructed population vali-
dated the association of this locus with starch content varia-
tion. Genome-wide association study identified a significant 
SNP in the ORF region of GRMZM5G852704_T01 within 
Qsta9.1 interval. Co-expressed genes were screened through 
maize inbred line B73 and Mo17 across six seed develop-
mental stages. Modules of co-expressed genes were identi-
fied, and functional enrichment was performed. In this major 
QTL interval, one transcripts GRMZM2G110929_T01 
annotated as GLABRA2 expression modulator was assigned 
in the module with enriched function of carbohydrate bio-
synthetic or metabolic process, showing the potential can-
didate for starch content.

Materials and methods

Plant materials

Totally 283 intermated recombinant inbred lines (RILs) 
derived from B73 and Mo17 (the IBM population) and 
the parental lines were employed in this study. The 
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materials were grown at Liuhe (LH), Nanjing, and Sanya 
(SY), Hainan, China, with three replication blocks in each 
location in both 2015 and 2016. This experiment was per-
formed in a randomized complete block design with 285 
rows in each block and around 20 plants per row.

A  F2:3 population was newly constructed from the cross 
between B73 and Mo17 in 2016, including 540 lines. Out of 
these individuals, two starch content tails consisting of 27 
plants each were selected for further analyses.

The seeds of the 149 maize lines were obtained from the 
Jiangsu Academy of Agricultural Sciences, Beijing Acad-
emy of Agricultural and Forestry Sciences and Anhui Acad-
emy of Agricultural Sciences (Supplementary Table S1), 
and planted in the field of Liuhe (LH), Nanjing, China, in 
2018, as the GWAS analysis population. The mature seeds of 
each line were harvested in bulk and used for starch content 
analysis.

Starch content measurement

The 3,5-dinitrosalicylic acid (DNS) method (Miller 1959) 
was used to determine starch content with ten mixed mature 
ears on a VECTER22/N near-infrared analyzer. Three rep-
licates were performed for each sample.

Genotyping and QTL mapping

The genetic map of IBM population including more than 
1300 markers was downloaded at the Maize Genetics and 
Genomics Database (http://www.maize gdb.org/data_cente r/
qtl-data). To saturate the gaps in the IBM linkage map, more 
than 260 InDel markers were developed following the mIn-
Del pipeline (Lv et al. 2016) by comparing corresponding 
sequences between B73 (RefGen_v3_sequence) and Mo17 
sequenced by the Department of Energy Joint Genome Insti-
tute (JGI) (http://www.maize gdb.org/).

The software QTL IciMapping (v4.1) (Meng et al. 2015) 
was used for map construction and QTL mapping. ICIM-
ADD was selected for QTL scanning, and the LOD score 
for declaring a QTL was set as 2.5.

Genome‑wide association study

An association mapping panel composed of 149 maize 
inbred lines was used as plant material in this study (Sup-
plemental Table S1). The seedlings of 149 maize lines were 
sampled and SNP genotyping was performed using the 
MaizeSNP50 (50 K) BeadChip based on Illumina platform 
as described by the manufacturer (Illumina, Inc. San Diego, 
CA). SNPs with < 5% minor allele frequency data and 
> 20% missing data were eliminated as redundant data. In 
addition, we used a linkage disequilibrium threshold (r2) of 
0.20 with a SNP window size of 50 and number of SNPs to 

shift window at each step of 10 (PLINK command: –indep-
pairwise 50 10 0.20) (Purcell et al. 2007). Then, it was plot-
ted with R scripts, which drew averaged r2 against pairwise 
marker distances.

Phylogenetic tree was constructed by using neighbor-
joining method on the basis of distance matrix calculated 
by using the software PHYLIP v.3.68 (http://evolu tion.genet 
ics.washi ngton .edu/phyli p.html) and was presented by using 
interactive tree of life (iTOL) v3 (Letunic and Bork 2016). 
Principal component analysis (PCA) was performed with 
software EIGENSOFT v6.1.4 (https ://www.hsph.harva 
rd.edu/alkes -price /softw are/). Population substructure was 
calculated using ADMIXTURE (version 1.3) (Alexander 
et al. 2009) running with default settings for K = 1 to K = 10. 
And the kinship coefficient matrix that explained the most 
probable identity by state of each allele between individuals 
was estimated with the TASSEL program (Bradbury et al. 
2007).

Association analyses were conducted using both gen-
eral linear model (GLM) and mixed linear model (MLM) 
through the TASSEL program (Bradbury et al. 2007). The 
threshold for significant association was set based on the 
Bonferroni correction (0.05/9076 = 5.51 × 10−6). The Man-
hattan plot of − log10 P was generated using R software.

RNA‑seq dataset

For co-expression network analysis, the RNA-seq data of 
maize whole seeds of B73 and Mo17 with six developmen-
tal stages, including 12, 16, 20, 24, 30, and 36 days after 
pollination, were downloaded from https ://trace .ncbi.nlm.
nih.gov/Trace s/sra/?study =SRP01 5339. After trimmed via 
SolexaQA (Cox et al. 2010) with Phred score ≥ 20 longer 
than 20 bp, reads were mapped to the B73 v3 reference 
genome through Bowtie2 (v2.1.0) (Langmead et al. 2009). 
Only the unique hit in the reference genome was used for 
further analysis. Based on the coordinates of mapped reads, 
the read depth of each gene was computed and the fragments 
per kilobase of transcript per million mapped reads (FPKM) 
was calculated by using Cufflinks (v2.1.1) (Trapnell et al. 
2010) representing the expression levels.

Co‑expression network analysis

Two-way ANOVA was performed using a custom-made 
function in R to identify transcripts that were differentially 
expressed following different stages. The P values for the 
model were then corrected for multiple hypotheses test-
ing using FDR correction at 5% (Benjamini and Hochberg 
1995). The transcripts passing the cutoff (P ≤ 0.05) for the 
model and developmental stages were deemed significant.

http://www.maizegdb.org/data_center/qtl-data
http://www.maizegdb.org/data_center/qtl-data
http://www.maizegdb.org/
http://evolution.genetics.washington.edu/phylip.html
http://evolution.genetics.washington.edu/phylip.html
https://www.hsph.harvard.edu/alkes-price/software/
https://www.hsph.harvard.edu/alkes-price/software/
https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP015339
https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP015339
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Following the WGCNA procedure (Langfelder and Hor-
vath 2008), consensus co-expression network construction 
and module detection were conducted.

Gene functional annotation and enrichment

The Blast2GO software package v4.1.9 (Conesa et al. 2005) 
was used to predict gene functions in three steps: finding 
homologues sequences with BLASTX algorithm with a cut-
off E-value of 1.0E−3, mapping to retrieve gene ontology 
(GO) terms, and annotating to predict reliable functions. The 
transcripts with significant GO terms were determined with 
an E-value hit filter of less than 1.0E−6 and an annotation 
cutoff of 55.

In addition, SEA (singular enrichment analysis) tool on 
the AGRIGO sever was used by searching the predicted 
transcripts against the Zea mays spp. v5a to determine 
significant functional enrichment among the transcripts in 
each module. The list of transcript names was prepared, and 
enrichment GO terms were collected after statistical test 
from background of maize genome locus with a P ≤ 0.01 
significance threshold (after FDR population correction).

Results

QTLs associated with starch content in maize kernel

Although more than 1300 markers have anchored in the 
IBM map, still some gaps exist. To fill in the gaps, 1859 
InDel markers with unique position were developed based 

on B73 and Mo17 genome sequences. 265 InDel mark-
ers were integrated into the IBM linkage map and filled 
some of the gaps. The newly constructed linkages map 
had extended the coverage from 6242.7 to 6407.1 cM and 
reduced the average interval from 4.69 to 4.00 cM.

In the IBM population, the average kernel starch con-
tent spanned from 62.04 to 72.25, implying large variation 
for starch content in this population. The whole genome 
was scanned and eight QTLs were detected for starch 
content in at least two experiment conditions, distributing 
on chromosomes 1, 2, 3, 7, and 9, respectively (Table 1). 
There were two QTLs identified on chromosomes 1, 3, 
and 9 (Table 1).

The most stable QTL (Qsta9.1) located on chromosome 
9 was detected in all the four experiment conditions with 
the LOD score as 3.17–5.30, explaining 5.45–6.84% of the 
phenotypic variance (Table 1). B73 contributed the higher 
starch content allele. This QTL was mapped between 
umc1867 and JAAS669 on the terminal region of the short 
arm (Fig.  1). Based on B73 RefGen_v3, Qsta9.1 was 
mapped in the physical distance around 1.7 Mb which was 
from 5,080,913 to 6,826,022 bp. Another QTL (Qsta9.2) 
was also detected on chromosome 9 which is more than 
200 cM away from Qsta9.1 (Table 1).

The other QTLs were detected in two experiments, 
explaining 3.74–7.97% of the phenotypic variance. Two 
QTLs located on chromosomes 3 (Qsta3.1) and 7 (Qsta7) 
obtained the higher starch content allele from Mo17, 
explaining as high as 5.65% and 7.36% of the phenotypic 
variance, respectively.

Table 1  QTLs detected for 
starch content in maize kernel 
by using the IBM population

QTLs Trait Chr Position (cM) Left marker Right marker LOD R2 (%) Add

Qsta1.1 2015SY 1 394.0 umc2025 z22 5.81 6.78 0.45
2016SY 1 394.0 umc2025 z22 4.92 5.86 0.41

Qsta1.2 2015SY 1 717.0 csh4 umc1446 4.31 4.95 0.38
2016SY 1 717.0 csh4 umc1446 4.75 5.65 0.40

Qsta2 2016LH 2 311.5 csu1080b z47 5.12 6.69 0.40
2015LH 2 313.5 z47 mmc0401 4.22 7.34 0.51

Qsta3.1 2015SY 3 297.0 z58 psr119a 3.09 3.74 − 0.33
2016SY 3 300.0 psr119a cdo105 4.63 5.65 − 0.40

Qsta3.2 2016LH 3 399.0 JAAS5448 umc1644 3.56 5.64 0.36
2015LH 3 404.5 JAAS5448 umc1644 2.55 5.11 0.40

Qsta7 2016SY 7 146.0 crt2 phi034 4.68 5.78 − 0.41
2015SY 7 151.0 bnlg1094 psr371b 6.56 7.97 − 0.49

Qsta9.1 2016SY 9 24.5 umc1867 JAAS669 5.30 6.84 0.44
2015LH 9 25.0 umc1867 JAAS669 3.17 5.76 0.43
2016LH 9 26.5 umc1867 JAAS669 3.53 5.45 0.35
2015SY 9 28.0 umc1867 JAAS669 4.70 6.68 0.45

Qsta9.2 2015SY 9 262.0 psr129a umc1107 4.47 5.15 0.39
2016SY 9 262.0 psr129a umc1107 4.66 5.54 0.39
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Allele frequency analysis in Qsta9.1 region 
between two extreme tails of starch content

From a newly constructed  F2:3 population derived from 
B73 × Mo17, two extreme tail lines of starch content were 
selected with the average starch content of the lines of high 
tail of 77% and that of the low tail of 65%; each tail con-
tains 27 lines. To further validate whether the major QTL 
Qsta9.1 is associated with starch content variation, allele 
frequency test was conducted between the two extreme 
tails. Five markers anchored within Qsta9.1 interval and 
eight markers adjacent to the region were used to detect the 
allele frequency difference between the two tails. Significant 

differences were detected for the five markers in the Qsta9.1 
region, showing significant deviation from 1:1 ratio (Table 2; 
Fig. 2). Declined allele frequency differences were observed 
for the flanking markers (Table 2), in agreement with the 
QTL analyses. Meanwhile, 50 markers evenly distributed 
throughout the genome were used to test the allele frequen-
cies in the extreme tails, and 1:1 ratio was identified for 
each parental allele, indicating no bias exit in the individuals 
between two extreme tails (Fig. 2).

Genome‑wide association study (GWAS) for starch 
content

A total of 47,479 SNPs remained after eliminating redun-
dant data, and then, linkage disequilibrium was analyzed. 
Finally, 9076 SNPs were obtained for subsequent analysis. 
Population structure of the 149 maize lines based on the 
9076 SNPs showed that the minimum peak value of cross-
validation error appeared at K = 7 when the number of sub-
populations increases from 2 to 10 (Supplementary Fig. S1; 
Supplementary Fig. S2A). Cross-validation results obtained 
by ADMIXTURE (Alexander et al. 2009) suggested K = 7 
as the most likely number of groups (Supplementary Fig. 
S2A). In the PCA, seven principle components explained 
68.02% of the total SNP variance, while the first and second 
principle components explained 16.15% and 12.20% of the 
total SNP variance, respectively (Supplementary Fig. S2B). 
A neighbor-joining tree was constructed based on P genetic 
distance showing seven clusters for this panel (Supplemental 
Fig. 2C), which was consistent with the results of the popu-
lation structure analysis.

Considering the potential spurious associations in GWAS, 
the general linear model (GLM) and the mixed linear model 
(MLM) were compared, as shown in the quantile–quantile 
(QQ) plots (Supplementary Fig. S3), and both models fit to 
our data. GWAS for starch content was performed based on 
a dataset containing 149 maize lines genotyped with 9076 
SNPs (Fig. 3). According to the MLM analysis, ten SNPs 
reached the significant level, distributing on chromosomes 
1, 3, 4, and 9, respectively (Table 3; Fig. 3), which were also 
detected in GLM analysis (Table 3; Supplementary Fig. S4).

One SNP located at 5,877,060 bp within the Qsta9.1 
interval was identified significant association with 
starch content in the GWAS population (Table 3; Fig. 3; 

Fig. 1  The major QTL Qsta9.1 detected on chromosome 9 in four 
experimental conditions

Table 2  Allele frequency 
analysis in Qsta9.1 region 
between two starch content 
extreme tails

Regions (marker 
number in the 
region)

Low tail frequency High tail frequency Frequency 
difference

Probability

B73 allele Mo17 allele B73 allele Mo17 allele

Left Qsta9.1: (4) 0.39 0.61 0.69 0.31 0.30 < 0.05
Qsta9.1: (5) 0.35 0.65 0.69 0.31 0.34 < 0.05
Right Qsta9.1: (4) 0.40 0.60 0.62 0.38 0.22 < 0.05
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Supplementary Fig. S4). Another SNP assigned in Qsta9.1 
region did not reach the significant level in MLM analy-
sis, but showed significant association in GLM analysis and 
located at 5,997,883 bp on chromosome 9 (Supplementary 
Fig. S4). This result confirmed the contribution of this chro-
mosome region to starch content variance.

Annotation of the genes predicted in the major QTL 
Qsta9.1 region

Within the 1.7 Mb region on chromosome 9 defined by the 
markers, 116 transcripts were predicted (Supplementary 
Table S2). Blast2GO analysis showed that they encode mem-
brane-anchored ubiquitin-fold 3 isoform X2, peroxisome 
proliferator-activated receptor gamma coactivator 1-beta, 
TLD-domain-containing nucleolar, cycloartenol-C-24-meth-
yltransferase, pentatricopeptide repeat-containing mitochon-
drial, etc. (Supplementary Table S2). The significant SNP 
identified in Qsta9.1 interval with MLM in GWAS analysis 

Fig. 2  Allele frequency analysis between two starch content extreme 
tails from a newly constructed  F2:3 population. Left: allele frequency 
test of nine markers surrounding Qsta9.1 region; Right: allele fre-

quency test of 50 markers distributed across maize genome. A: allele 
from B73; B: allele from Mo17; H: heterozygous

Fig. 3  Manhattan plots of the 
association of SNPs with starch 
content with MLM analysis. 
Genome position is shown 
along the x-axis divided by 
chromosome, and the − log10 P 
for association is shown on the 
y-axis

Table 3  SNPs significantly associated with starch content in GWAS 
analysis

SNP Chromosome Position P value

GLM MLM

S1_208321460 1 208,321,460 2.11E−12 5.40E−08
S1_210512907 1 210,512,907 2.94E−09 3.25E−06
S3_19783377 3 19,783,377 3.09E−36 3.97E−14
S3_223778724 3 223,778,724 3.86E−36 3.15E−14
S3_231079903 3 231,079,903 1.05E−14 1.49E−07
S4_44889892 4 44,889,892 2.34E−36 4.73E−14
S6_15445098 6 15,445,098 2.45E−10 2.15E−06
S6_155418930 6 155,418,930 9.37E−13 9.31E−08
S9_5877060 9 5,877,060 2.96E−36 5.09E−14
S9_137058114 9 137,058,114 3.49E−36 2.10E−14
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was located in the ORF region of GRMZM5G852704_T01, 
which was annotated as ethylene-responsive transcription 
factor RAP2.24 (Supplementary Table S2).

Expression pattern of the genes in Qsta9.1 region 
across seed development

By using the RNA-seq data of whole seeds at 12, 16, 20, 24, 
30, and 36 days after pollination, expression patterns of those 
genes in the Qsta9.1 region were detected. After remov-
ing the low-expressed transcripts with a maximum FPKM 
below one, 24 transcripts without GRMZM5G852704_
T01, whose expression level was lower than one across all 
development stages, were left for further analysis. Based 
on two-way ANOVA, eight transcripts showed different 
expression patterns between B73 and Mo17 across seed 
developmental stages, including GRMZM2G003023_
T01, GRMZM2G019291_T02, GRMZM2G019291_T07, 
GRMZM2G051330_T01, GRMZM2G082198_T03, 
GRMZM2G090226_T01, GRMZM2G103227_T01, and 
GRMZM2G110929_T01 (Fig. 4).

Identification of differentially expressed genes 
between B73 and Mo17 during seed development

To identify genes correlated with starch content, the tran-
scriptome profiles of whole seed with six developmental 
stages of B73 and Mo17 were downloaded from NCBI, 
including the data of 12, 16, 20, 24, 30, and 36 days after 
pollination. Low-expressed transcripts with a maximum 
FPKM below one were removed as background noise. Two-
way ANOVA was conducted with a custom-made function, 
and differentially expressed genes during seed development 
were filtered. Finally, 16,808 transcripts were selected for 
further analysis (Supplementary Table S3).

Construction of co‑expression networks 
corresponding to seed developmental stages

Co-expression network was constructed based on WGCNA 
method, 28 modules were detected across the whole tran-
scriptome, and 38–4133 transcripts were included in each 
module (Supplementary Table S3; Fig. 5).

In order to understand functional enrichment of these 
transcripts, predicted transcripts were searched against the 
Zea mays spp v5a on the AGRIGO server with SEA tool. 
Based on the P ≤ 0.01 threshold, those transcripts in six 
modules got significant functional enrichment, including 
biological process (cellular localization, protein folding, 
etc.), cellular component (cytoplasm, intracellular, mito-
chondrion, etc.) and molecular function (nucleoside binding, 
transferase activity, etc.) (Supplementary Table S4).

However, enriched function carbohydrate biosynthetic 
process, cellular carbohydrate biosynthetic process, or cel-
lular carbohydrate metabolic process was only detected in 
one module (pink) (Supplementary Table S4), suggesting 
that genes gathered in this module associated with carbohy-
drate-related processes.

Candidate gene for the major QTL Qsta9.1

Combined QTL mapping and co-expression network 
analysis, the eight differentially expressed transcripts in 
the Qsta9.1 region were assigned into different modules. 
GRMZM2G019291_T02, GRMZM2G019291_T07, and 
GRMZM2G051330_T01 were put in the same module (yel-
lowgreen), GRMZM2G110929_T01 was assigned in module 
pink, and the others were in module darkslateblue, pale-
violetred2, darkseagreen1, and navajowhite1, respectively 
(Supplementary Table S3). No significant functional enrich-
ment was detected for module yellowgreen, palevioletred2, 
darkseagreen1 and navajowhite1. In module darkslateblue, 
only significant molecular functions were identified, includ-
ing adenyl nucleotide binding, ATP binding, and purine 
nucleoside binding (Supplementary Table S4). However, 
significant functional enrichments were detected in module 
pink, including carbohydrate biosynthetic process, cellular 
carbohydrate biosynthetic process, and cellular carbohydrate 
metabolic process, suggesting important role of genes in this 

Fig. 4  Expression pattern of 24 transcripts predicted in Qsta9.1 
region compared between B73 and Mo17 across six seed develop-
mental stages. Asterisk: transcripts showing significant different 
expression pattern between B73 and Mo17 according to two-way 
ANOVA
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module for starch content (Supplementary Table S4). So 
GRMZM2G110929_T01 in module pink showed the strong-
est potential candidate for the major QTL Qsta9.1. It was 
located between 6,733,266 bp and 6,734,635 bp on chromo-
some 9 (B73 v3) and annotated as GLABRA2 expression 
modulator according to BLAST2GO.

Another transcript GRMZM5G852704_T01 could be 
the candidate of Qsta9.1, with low expression level though. 
Two InDels (insertion and deletion) exist between the pro-
tein sequences of GRMZM5G852704_T01 between B73 and 
Mo17 (Supplementary Fig. S5).

Discussion

In this paper, we combined QTL mapping, genome-wide 
association study and co-expression network analysis to 
identify candidate genes associated with starch content in 
maize kernel. A major QTL was identified on chromosome 
9 with stable contribution to the variation of starch content. 
Together with co-expression network analysis, a transcript 
within mapped QTL interval was assigned in the module 
with functional enrichment associated with carbohydrate-
related processes. The study reported herein we applied the 
classical genetics and current genomic technologies that 
together provide a general strategy for efficient detection of 
the causative genes responsible for the variation.

In previous studies, the QTLs for maize starch content 
have been mapped on all ten chromosomes (Clark et al. 
2006; Cook et  al. 2012; Dudley et  al. 2007; Guo et  al. 
2013; Liu et al. 2016; Séne et al. 2000; Wang et al. 2010, 
2015; Wassom et al. 2008; Yang et al. 2013; Zhang et al. 

2008,2015). Several studies have found QTLs for starch 
content in maize on chromosome 9. By using an advanced 
recombinant inbred line population derived from Chinese 
line 178 and P53, two QTLs were identified in the interval of 
bnlg430-dupssr19 and umc1771-bnlg430 on chromosome 9, 
respectively (Zhang et al. 2015). In the CI7/K22 RIL popu-
lation, a starch content QTL was found in the interval of 
PZE10907827-PZE109082140 with the physical position 
of 126.2–130.8 Mb (Wang et al. 2015). Cook et al. (2012) 
detected two QTLs for starch content at 24,028,939 bp and 
126,584,775 bp on chromosome 9. Through GWAS analysis, 
several SNPs on chromosome 9 showed significant associa-
tion with amylose content (Li et al. 2018). QTLs on chromo-
some 9 were also reported by some other researches (Guo 
et al. 2013; Yang et al. 2013). Despite the declaration of 
location on chromosome 9 for these QTLs, their positions 
were not exactly the same and within large intervals. To 
map the loci for starch content more accurately, we used 
the high-density map constructed by IBM population in this 
study. Although this map contained more than 1300 markers, 
there were still some gaps left on each linkage, which require 
additional markers to fill in. IBM population was developed 
by crossing B73 and Mo17, followed by four cycles of ran-
dom mating which increased the recombination rate dramati-
cally. The main reason for gap existence is lacking adequate 
amount of molecular markers. Fortunately, sequencing 
the whole genome of B73 and re-sequencing Mo17 have 
produced enough sequence information for marker devel-
opment. Coupled with the high recombination RIL popu-
lation, we screened 1859 primer pairs InDel markers with 
unique position, and 265 were integrated into the IBM link-
age map and filled some of the gaps. The saturated linkages 

Fig. 5  Consensus modules 
detected through co-expression 
network analysis. Clustering 
dendrogram of genes, with dis-
similarity based on topological 
overlap, together with assigned 
module colors
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were used for QTL mapping, and the major QTL Qsta9.1 
was located into a 1.7 Mb region. Through another newly 
constructed  F2:3 population from B73 × Mo17, significant 
differences were detected for the Qsta9.1 region between 
two extreme tails, validating association of the region with 
starch content. Also, genome-wide association study was 
performed and significant association was detected between 
SNPs in the Qsta9.1 region and starch content variation. 
One hundred and sixteen transcripts were predicted in this 
interval, the coding proteins including fucosyltransferase, 
methyltransferase, kinase, transcription factor, and so forth 
(Supplementary Table S2). In traditional way, it is difficult 
to tell which one is the candidate among so many genes. But 
co-expression network has provided an alternative approach 
to do this work.

Gene co-expression network has been used as a more 
rapidly way in identification of gene modules and key genes 
responsible for particular conditions. Transcription factors 
associated with cell wall biosynthesis were revealed by co-
expression network analysis in sugarcane (Ferreira et al. 
2016). Novel regulation of potato pigmentation was revealed 
by network analysis of the metabolome and transcriptome 
(Cho et al. 2016). In maize, regulatory motifs were identified 
from developmental co-expression network (Downs et al. 
2014). Based on transcript abundance data in maize, co-
expression modules were classified association with tissue 
types and related biological processes (Downs et al. 2013). 
Except for identification of gene modules for a particular 
condition, comparative based co-expression approaches 
were also used for conserved modules across species as well 
as for differential modules (Du et al. 2017; Leal et al. 2014; 
Thirunavukkarasu et al. 2017). To identify candidate gene 
for starch content in maize kernel, differentially expressed 
genes between B73 and Mo17 during seed development 
were screened and co-expression network was constructed. 
Finally, 28 modules were detected across the whole tran-
scriptome and functional analysis showed that module pink 
associate with carbohydrate-related process, suggesting that 
genes in this module play roles for starch content in kernel.

Together with the QTL mapping results, one transcript 
GRMZM2G110929_T01 located within the 1.7 Mb region 
of the major QTL Qsta9.1 was assigned in module pink and 
annotated as the GLABRA2 expression modulator (GEM) 
encoding proteins contains GRAM (glucosyltransferases, 
Rab-like GTPase activators, and myotubularins) domain. 
In Arabidopsis, GEM is an ABA-responsive protein as 
part of the ABA signaling pathway (Mauri et al. 2016). 
One of the GEM family members GEM-RELATED5 
(GER5) closely related to GLABRA2 expression modula-
tor has been implicated in regulating seed development and 
inflorescence architecture based on its expression pattern, 
which was shown to be in part overlapping with that of 
GER1 and GEM in reproductive organs (Baron et al. 2014). 

Furthermore, mutant analysis showed transcripts changes 
in carbohydrate metabolism and catabolic processes (Baron 
et al. 2014). These results suggested the potential role of 
GRMZM2G110929 affecting starch content in maize kernel.

Based on GWAS analysis, one significant SNP was 
detected within the ORF region of GRMZM5G852704_
T01 annotated as ethylene-responsive transcription factor 
RAP2.4. Although with low expression level, there were dif-
ferences between the protein sequences of this gene in B73 
and Mo17. In Arabidopsis, RAP2.4 was involved in multiple 
developmental processes regulated by light and ethylene, 
including hypocotyl elongation and gravitropism, apical 
hook formation and cotyledon expansion, flowering time, 
root elongation, root hair formation, and drought tolerance 
(Lin et al. 2008). Overexpression of the Rap2.4f transcrip-
tional factor in Arabidopsis promotes leaf senescence (Xu 
et al. 2010). Another one RAP2.2 in the same family affected 
the induction of genes encoding sugar metabolism (Hinz 
et al. 2010). These results also made GRMZM5G852704_
T01 one of the candidates of Qsta9.1 controlling starch con-
tent in maize kernel.
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